1,2-DITHIOLIUM SALTS

I. 3-Alkylthio- and 3-Carboxymethylthio-1,2-Dithiolium Iodides

M. G. Voronkov and T. V. Lapina

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 6, No. 3, pp. 342-344, 1970

UDC 547.738

The reaction of aryl-1,2-dithiol-3-thiones with alkyl iodides and with ICH_2COOH and $ICH_2COOC_2H_5$ has been studied. This gives 3-alkylithio-3-carboxymethylthio-, and 3-ethoxycarbonylmethylthio-1,2-dithiolium iodides. Compounds of the first type are formed only with lower unbranched alkyl iodides (CH₃I, C_2H_5I , and $n-C_3H_7I$), and salts of the last two types were previously unknown.

1,2-Dithiol-3-thiones (I) readily react with methyl iodide [1-6] and with dimethyl sulfate [5], forming 3-methylthio-1,2-dithiolium salts (II), $\mathbb{R}^{"} = CH_{3}$).

$$\begin{array}{c} R - C & = S \\ R - C & = S \\ R - C & S \\ I \\ I \\ CH_2 COOH, CH_2 COOC_2 H_5 \end{array} + R'' X \xrightarrow{R} - C & = C - S - R'' \\ R - C & = S \\ R - C & =$$

However, 3-alkylthio-1,2-dithiolium salts containing an alkyl group R" other than CH_3 have not been obtained previously, and the very possibility of their formation has not been studied. Salts of type II in which the substituents R^n contains a functional group were unknown.

By the scheme given above we have synthesized new salts of type II with $R'' = C_2H_5$, $n-C_3H_7$, CH_2COOH and $CH_2COOC_2H_5$ (see table). We were unable to obtain the analogous salts by the reaction of aryl-substituted 1, 2-dithiol-3-thiones with $R'' = i-C_3H_7I$, $n-C_4H_9I$, C_6H_5I , CH_2I_2 , CHI_3 and $HOCH_2CH_2I$.

The 3-carboxymethylthio-1, 2-dithiolium salts ($R^{"} = CH_2COOH$) are of special interest. They are green or yellowgreen crystalline substances, while the compounds of structure II with $R^{"} = C_nH_{2+1}$ or $CH_2COOC_2H_5$ have colors from dark red to orange. They are insoluble in water and in the usual organic solvents but dissolve in aqueous solutions of Na_2CO_3 and NaOH (with a red-brown coloration) and in ethanolic KOH (forming a bright red solution). The results of a study of the physical and chemical properties of the 3-carboxymethylthio derivative of 1,2-dithiolium salts will be published separately.

EXPERIMENTAL

Iodoacetic acid was obtained by the double decomposition of chloracetic acid and an aqueous solution of sodium iodide, mp 82° C [7].

Ethyl iodoacetate was prepared by the esterification of the free acid with ethanol in the presence of H_2SO_4 , bp 38-40° C (3 mm); n_D^{20} 1.4992.

Ethylene iodohydrin was obtained by the double decomposition of ethylene chlorohydrin with potassium iodide in ethanol, bp $55-57^{\circ}$ C (10 mm); n^D_D 1.5310 [8].

3-Ethylthio-4-p-tolyl-1,2-dithiolium iodide. A solution of 1.0 g (0.004 mole) of 4-p-tolyl-1,2-dithiol-3-thione and 2.0 ml (3.8 g, 0.024 mole) of ethyl iodide in 50 ml of ethanol was heated to the boil until the separation of a precipitate of the salt II ceased. This was filtered off with suction, washed with benzene, and dried in vacuo. Yield 1.5 g (88.5%) mp 191° C.

3-n-Propylthio-4-p-tolyl-1, **2-dithiolium iodide.** A solution of 1.0 g (0.004 mole) of 4-p-tolyl-1 2-dithiol-3thione and 2.0 ml (3.5 g, 0.02 mole) of n-propyl iodide in 30 ml of benzene was heated to the boil for 5-6 hr. On

R	R'	R″	Mp, °C	Color and form of the crystals	Empirical formula	Found, %			Calculated, %		
						с	н	s	с	н	s
н	C_6H_5	C ₂ H ₅	165	Lustrous orange-red plate	C ₁₁ H ₁₁ S ₃ I	36.60	3.08	26.32	36.07	3,28	26.26
н	p-CH₃C ₆ H₄	C ₂ H ₅	191	Lustrous orange needles	$C_{12}H_{13}S_3$ I	37.51	3.65	25.09	37.91	3.45	25.24
н	p-CH ₃ OC ₆ H ₄	C ₂ H ₅	171	Lustrous red-orange plates	C ₁₂ H ₁₃ OS ₃ I	36.75	3.15	24.21	36.37	3.31	24.27
н	p-CH₃C₅H₄	<i>n</i> -C ₃ H ₇	158	Lustrous dark red plates	$C_{13}H_{15}S_{3}I$	39.46	4.03	24.92	39.60	3.84	24.39
Н	p-CH₃C₅H₄	CH₂COOC₂H₅	133	Orange needles	$C_{14}H_{15}O_2S_3$ 1	38.21	3,58	21.61	38.39	3.45	21.94
н	p-CH ₃ OC ₆ H ₄	CH ₂ COOC ₂ H ₅	130	Yellow-orange needles	$C_{14}H_{15}O_3S_3I$	37.25	3.94	21.38	37.01	3,33	21.15
p-CH₃OC₅H₄	Н	CH ₂ COOC ₂ H ₅	123 ·	Brown plates	$C_{14}H_{15}O_3S_3I$	37.68	3.30	21.54	37.01	3,33	21.15
Н	C ₆ H ₅	CH₂COOH	177	Yellow-brown	$C_{11}H_9O_2S_3I$	33.02	2,91	24.08	33.32	2.27	24.21
Н	p-CH ₃ C ₆ H ₄	CH₂COOH	167	Yellow-green	$C_{12}H_{11}O_2S_3I$	35.30	2.89	23.79	35,15	2.68	23.40
н	p-CH₃OC6H4	CH₂COOH	163	Green-yellow	$C_{12}H_{11}O_3S_3I$	34.16	2.71	22,42	33.81	2.59	22.56
p-CH₃OC ₆ H₄	н	СН₂СООН	168	Lustrous green plates	$C_{12}H_{11}O_3S_3I$	33.78	2.57	22.23	33,81	2,59	22.56

3-Organothio-1,2-dithiolium Iodide

 $\begin{array}{c} R-C - C - S - R^{*} \\ R'-C + S \qquad J \\ \end{array}$

standing, crystals deposited, and these were filtered off with sunction, washed with benzene, and dried. Yield 0.65 g (37.2%), mp 158° C.

3-Carboxymethylthio-4-p-tolyl-1, 2-dithiolium iodide. A solution of 1.0 g (0.004 mole) of 4-p-tolyl-1, 2-dithiol-3-thione and 1.0 g (0.005 mole) of iodoacetic acid in 20 ml of benzene was heated to the boil for 2 hr. The precipitate that deposited was filtered off with suction, washed with ethanol and benzene, and dried in vacuo. Yield 1.2 g (65.7%), mp 167° C (decomp).

REFERENCES

1. M. G. Voronokov, Candidate's Dissertation: A Study of the Reaction of Sulfur with Phenylolefins [in Russian], Leningrad State University, Leningrad, 1947; Vestn. LGU, no. 2, 146, 1948.

- 2. M. G. Voronkov and A. S. Broun, DAN, 59, 1437, 1948.
- 3. M. G. Voronkov, A. S. Broun, and G. B. Karpenko, ZhOKh, 19, 1927, 1949.
- 4. B. Bottcher and A. Luttringaus, Lieb. Ann., 557, 89, 1947.
- 5. B. Bottcher and F. Bauer, Lieb. Ann., 568, 227, 1950.
- 6. A. Luttringaus and H. Goetze, Angew. Chem., 64, 664, 1952.
- 7. E. Abderhalden and M. Guggenheim, Chem. Ber., 41, 2853, 1908.
- 8. A. Butlerow and M. Ossokin, Lieb. Ann., 144, 42, 1867.

14 June 1968

Institute of Organic Synthesis, AS Latvian SSR, Riga